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I. Phys. A: Math. Gen. 26 (1993) 1313-1316. Printed in the UK 

SU(l,l)-invariant solution of the quantum Yang-Baxter 
equation 

V Ya Chemyak, A E Kozhekin and E I Ogievetsky 
Institute of Spedroscopy, Russian Academy of Sciences, Troitsk, Moscow Region, 142092, 
Russia 

Received 8 June 1992 

Abshaci. A new approach to the solution of the quantum Yang-Baxter equation is presen- 
ted and complete SU(I,l)-invariant factorized unitary scattering matrix is constructed. 

Completely integrable lattice models are very useful for many problems of modem 
physics. This is the reason why the problem of constructing solutions of the quantum 
Yang-Baxter equation (QYBE)-factorized scattering matrices-is widely discussed in 
scientific literature [l-51. But a straightforward solution of QYBE for infinite- 
dimensional representations of some groups (for instance unitary representation of 
the uncompact Lie group), and thus constructions of exact solutions of completely 
integrable models with symmetry of this group, is not possible. 

In this paper we present a new approach to the solution of QYBE and wnstruct 
SU(2) and SU(1,l)-invariant factorized unitary scattering matrices as an example. 

In accordance with the conception of the universal scattering matrix R introduced 
by Drinfeld [6] ,  the QYBE holds for arbitrary representations of the group S, S’ and S” 

a Isr)( A )  4e Iss”)( A + pp rJ( p )  = 4e iySvJ( p)  4e Iss”)( A -F p)%\SrJ ( A) (1) 
where A and p are rapidities. 

Consider S as a representation ofthe spin-;. Using the known [7] scattering matrices 
of a spin-; particle by the particle, associated with the representation of SU(2) or 
SU(1,l) group, we can consider (1) as alinear (finite- or infinite-dimensional) equation 
on Rp‘s’s”’(p). The scattering matrix %(lS’) can be written as 

where Xl j  are the Hubbard operators (XljXkr = ajkXI!) in the space of the spin-; 
(i, j = 1,Z) and TF(A) are the operators in the space of the spin S’ representation - V , .  

5?(’r)(A) = X i j O  f i Y ) ( A )  (2) 

Using (2) we can rewrite (1) in the channel $OS‘OS‘ as 

( p )  = R(=”’( p)TR (3) T L ~ “ S S ”  

where TL and TR are the operators in the space Vs@ Vs- which are 
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Note that TL and UR represent two possible ways of scattering of the probe spin-f 
particle on the pair of particles belonging to the representations of S', S' multiplets. 
It is easy to see that 
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Tr, UL=Tr, UR. ( 5 )  
We can consider space VsQ Vs. as a representation space of two two-node lattice 

quantum integrable models with U; and U&quantum scattering data of these two 
models with the same commutation relations. 

Now let us consider the Bethe states of these models; diagonalizing operators Tr TL, 
TrUR 

(6)  
l h l , . . . , A \ n ) ~ = u : 2 ( A l ) .  ..T:z(An)ln) 

Ihl,...,~.)R=TPz(hl)...~Pz(h,)l~) 
where [a) is a pseudo-vacuum state. 

Since operators Tr U are diagonalized in the same Bethe states we can see from 
(5) that the Bethe states of these two models coincide. Norms of the Bethe states are 
determined only by commutation relations of operators Utj(A) and eigenvalues of 
operators Ull(A) and U&) on the vacuum statewhich are the same in the considered 
models. Thus, the only difference between these two models' Bethe states results from 
a phase factor 

\AI,...,A~)R (7)  A ) - e b ( A  ,..... A,)  AI,.... " L -  

where e'dA,'.....A") = - qn, which we shall refer to as a dephasing factor. 
Note that in accordance with (3) scattering matrix $? (considered as an operator) 

commutes with the conservation law ( 5 ) ,  thus the operator 93 can be diagonalized on 
the Bethe states. Acting on (7) with operator 93 and using (3) we have 

A ) - e i d A  ,...., A ) L 
9 3 I A 1 ,  ..., n L- " TidAi) .  . .Ukz(An)93lO). 

We can determine the scattering matrix with an accuracy up to multiplication on an 
arbitrary function. Here we shall set 

qn)=ln), 

BIAi,..., n L -  

Thus 

Ihl 9 . .  . I  AJL. (8) A ) - e b + ( A , ~  ..., A n )  

Equation (8) determines the scattering matrix through the Bethe states and dephas- 
ing factor. But, in the case of rational scattering matrices the problem simplifies 
significantly. In this scattering matrices the problem simplifies significantly. In this 
case the scattering matrix $? can be represented as a direct sum of irreducible representa- 
tions: 

$?(S'S")( p)  = c qj( pp j  (9) 

where pi is a projection operator on St irreducible representation and pi( p )  is a 
dephasing factor which is the same for all states of this representation. 

Now we shall calculate the dephasing factor. Let us rewrite matrices U L  and TR in 
terms of local operators T I ? ) ,  ~lf'"': 

TkZ( A) = T\F)(A)O T',s"'(A + p )  + T',s)(A) Q Tis)(A + p)  
(10) 

UP,(A) = T!Y(A)O T\S"'(A + p ) +  fiY(A)O TlZ'(A tp). 
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Now let us consider the n-particle Bethe state (6). This state can be represented as 
a linear combination of states with a fixed number of excitations in each node (S’ and 
S”) provided that the total number of excitations at both nodes is n. The state which 
has 0 excitations in node S’ and n excitations in node S“ can be written in accordance 
with (10): 

10,n)L=T$?(Al)... T!s.)(A,)OT$S^’(hl+p) . . .  T‘,S”’(An+p)lO) 
l0,n) R- - T z z  (9) ( A , )  ... TLS’(A,)OTIS”’(A,+~)... T$s’(A+p)Ifl). 

The vacuam state is an eigenstate of operators T I ,  and T,, , thus 

where a&(A) and d ; ( A )  are eigenvalues of operators T{S’(A) and 7%)(A), respectively 

In our case of SU(2) or SU(1,I) symmetries, the T matrix can be represented as 171 
r71. 

where Sj aregeneratorsofrepresentationofthegroup SU(2) orSU(1,l) (spinoperators), 
and iT is treated as the Plank constant. We shall consider the pseudo-vacuum state as 
a state with the lowest possible eigenvalue of spin projection S,: S_(fl) = 0; S,lO) = S,(O) 
(S, is a negative number for the case of the SU(2) group, and positive for SU(1,I)). 

From (11) and (12) 

Thus we have found the dephasing factor in terms of Bethe’s rapidities only. It will 
be convenient to rewrite (13) as 

where Ej(Al , .  . ,,A.) are symmetrical combinations of the Bethe’s rapidities: 

E, = 1 E,,-, = A ,  +. ..+An En-2= C AiAj, ... Eo=A ,... A.. 
I llJ 

TO find Bethe’s rapidities let us consider the conservation law of our system. 
From (4) 

8 k i ( A )  T‘,?(A)O T‘,y’(A+p)+ T’,:”(A)O 7%”’(”’(Ap) 
(15) H%A) = TT(A)O +d+ TE‘)(A)o~~:)(A+~). 

Using (12) we obtain 

(S‘ . S”) 
(ir)2 

(A + iT/2)(A + p +iI’/2) 
U k, + U: = 2 + 

where (S’ S”) denotes the scalar product. 
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Note that a Bethe state has fixed values of both spin and spin projection. Thus, 
acting on the Bethe state with operators T f l+Tb  we have 

(ir)2 
(T + Th)lA,, . . . , A,) = 2 + a) h,. . .,A.) ( (A +ir/2)( A + p +ir/2) 
where (Y is the eigenvalue of the operator (S'. S'). 

On the other hand, using commutation relations we deduce 

Expanding eigenvalues in (16) and (17) in A and comparing coefficients at the 
same powers of A we obtain the following equations which determine quantities 

En-k =(ir)-'[k(2n - k-l)-2k(S:+S:)]-' 
Ei ( i = O ,  . . . , f l )  : 

) ~ ~ { c ; - n + k + + ?  i -n+h+2 + (-ir)'-"+k+z ((ir) 

( p + i r ( l -  S: - St)) 
i -n-k+l  

c ; - n + k + l  i--n+k+l ((ir) - 
+ (-ir)i-n+k+l ( p + i r ( l +  S:+ S:))) 
+ ci-"+k((ir)'-"+k( p+ ir/2 -irS:)(ir/2 -irS:) 
+ (-ir)i-"+k( p+ir/2+irsg)(ir/2+irs:))} 

where Cy are binomial coe5cients. and consistency condition 
LY = n(n-l)+Za(S:+S:)+ZS:S~ 

fixes the eigenvalue of spin in the Bethe states. 
The solution of equations (14) and (18) is 

with rpo = 1. 
Expression (19) coincides with the well known [8] SU(2)-invariant scattering matrix 

solution. The only difference is the following: Si, S: are negative integer (or half- 
integer) numbers in the case of SU(2) group, and any positive integer in the case of 

Thus equations (9) and (19) completely solve our problems and present scattering 
SU(1,l). 

matrices for all representations of the SU(1,l) group. 
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